
Network Source Data Types

Network Source Data Collection Platforms

While full-packet capture is often collected strategically as a component
of a continuous monitoring program or tactically during incident

response actions, it is often too large to process natively. Instead, distill
pcap files to other formats for more practical analysis. This offers the

best of both worlds – fast analysis against the distilled source data, while
retaining the original pcap file for in-depth analysis and extraction.

P F L

Network-Based
Processing Workflows

Although there is no single workflow to exhaustively
perform network forensic analysis, the most

common and beneficial tasks can generally be placed into the categories
below. Note that these categories are not generally iterative. They are

components of a dynamic process that can adapt to adversaries’ actions.

Bro NSM Log Files
The Bro Network Security Monitoring
platform produces numerous log
files containing useful artifacts
extracted from the source pcap data.
These logs are in ASCII format, but
generally require the “bro-cut”
utility for more streamlined analysis.
Note that not all log files will be
created – Bro only generates log files
that pertain to source traffic it has
parsed. This is not an exhaustive
list of all logs created – see
http://for572.com/bro-logs
for more log types.

The lightweight “passivedns” utility creates ASCII
records that detail DNS queries and responses. This format
is ideal for searching for activity across multiple protocols,
as most software (good or evil) makes DNS requests before
initiating a network connection. These logs can also be
easily parsed by a SIEM or log aggregator such as SOF-ELK.

Ingest and Distill
GOAL: Prepare for analysis and derive data that

will more easily facilitate the rest of the
analytic workflow

• Log source data according to local procedure
• If pcap files are available, distill to other data source

types (NetFlow, Bro logs, Passive DNS logs, etc.)
• Consider splitting source data into time-based chunks if

the original source covers an extended period of time
• Load source data to large-scale analytic platforms such

as SOF-ELK, Moloch, etc.

 Switch
A port mirror is a “software tap” that duplicates packets sent to or from
a designated switch port to another switch port. This is sometimes called a “SPAN port.”
The mirrored tra�c can then be sent to a platform that performs collection or analysis,
such as full-packet capture or a NetFlow probe.

Benefits
• Activating a port mirror generally requires just a configuration change, usually avoiding downtime.
• Switch presence at all levels of a typical network topology maximizes flexibility of capture/

observation platform placement.

Drawbacks
• Data loss is possible with high-tra�c networks, as bandwidth is limited to half-duplex speed.

 Tap
A network tap is a hardware device that provides duplicated packet data
streams that can be sent to a capture or observation platform to which it is connected. An
“aggregating” tap merges both directions of network tra�c to a single stream of data
on a single port, while others provide two ports for the duplicated data streams – one in
each direction. A “regenerating” tap provides the duplicated data stream(s) to multiple
physical ports, allowing multiple capture or monitoring platforms to be connected.

Benefits
• Purpose-built to duplicate tra�c – truly the best case for network tra�c capture.
• Engineered for performance and reliability. Most taps will continue to pass mirrored tra�c even

without power, for example.

Drawbacks
• Can be very expensive, especially at higher network speeds and higher-end feature sets.
• Unless a tap is already in place at the point of interest, downtime is typically required to install one.

 Layer 2-7 Devices
Any platform with control of or purview over a network link can
provide valuable logging data regarding the communications that pass through or by it.
These may be network infrastructure devices like switches, routers, firewalls, and a variety
of layer 7 devices such as web proxies, load balancers, DHCP and DNS servers, and more.
Endpoints may also be configured to generate full-packet capture data or to export NetFlow.

Benefits
• Many perspectives on the same incident can yield multiple useful data points about an incident.

Drawbacks
• Log data may include numerous formats and varying levels of detail in their contents. This may

require labor-intensive parsing and analysis to identify the useful details.
• Platforms that create the logs are often scattered across the enterprise – logically and physically.

This requires a sound log aggregation plan and platform – or a lot of manual work.

 Router
Routers generally provide NetFlow export functionality, enabling flow-based
visibility with an appropriate collector.

Benefits
• Infrastructure is already in place, again just requiring a configuration modification and little to no

downtime.
• Many organizations already collect NetFlow from their routing infrastructures, so adding an

additional exporter is usually a straightforward process.

Drawbacks
• Routers don’t generally provide the ability to perform full-packet capture.

Reduce and Filter
GOAL: Reduce large input data volume to a

smaller volume, allowing analysis with a
wider range of tools

• Reduce source data to a more manageable volume using
known indicators and data points

• Initial indicators and data points may include IP
addresses, ports/protocols, time frames, volume
calculations, domain names and hostnames, etc.

• For large-scale analytic platforms, build filters to reduce
visible data to tra�c involving known indicators

Scope and Scale
GOAL: Search more broadly within source

data for behavior that matches known
indicators

• After identifying useful artifacts that define activity
of interest, scale up the search using large-scale
analytic platforms and tools

• Identify additional endpoints that exhibit the
suspicious behavior, aiming to fully scope the
incident within the environment

• Pass appropriate indicators to security operations
for live identification of suspicious activity

Establish Baselines
GOAL: Identify parameters for “normal” patterns

of behavior to help find anomalies that
need to be investigated

• Determine typical cycles of tra�c, top-talking hosts,
ports/protocols, GET vs POST ratio for HTTP activity, etc.

• Build all baselines for multiple periods – most metrics
have di�erent cycles for daily, weekly, monthly, and
annual time frames

• Consider the levels within the organization at which the
baselines should be built – enterprise-level rollups will
generally di�er from those at lower levels

Analyze and Explore
GOAL: Identify tra c and artifacts that support investigative

goals and hypotheses
• Within the reduced data set, seek knowledge about the suspicious tra�c
• This may include evaluating tra�c contents, context, anomalies,

consistencies – anything that helps to clarify its relevance to the
investigation

• Seek any protocol anomalies that could indicate tra�c being misused for
suspicious purposes

• Use any available environmental baselines to identify deviations from
normal tra�c behaviors

Extract Indicators and Objects
GOAL: Find artifacts that help identify malicious activity, including field values,
byte sequences, files, or other objects
• As additional artifacts are identified, maintain an ongoing collection of these data points

for further use during and after the investigation
• These may include direct observations from within the network tra�c or ancillary

observations about the nature of the communications – related DNS activity, before/after
events, etc.

• Extracting files and other objects such as certificates or payloads can help feed other parts of
the IR process such as malware reverse engineering and host-based activity searches

• Protect this data according to local policies and share in accordance with appropriate
operational security constraints

File Metadata
files.log
• File metadata such as hash, MIME type, and more for all files observed,

via any protocol
x509.log
• Certificate metadata for SSL and TLS connections

Special Cases
signatures.log
• Events that match content signatures Bro has been directed to search for
• Not a replacement for an IDS, but often useful for targeted searching
weird.log
• Protocol anomalies that Bro did not expect
• Includes events such as unrequested DNS responses, TCP truncations, etc.

Inventory
known_hosts.log
• A list of IP client addresses that have

been observed completing at least
one TCP handshake
known_services.log
• List of server IP addresses and ports

that have been observed providing at
least one TCP handshake, including
the protocol (if available)
software.log
• List of software identified operating

within the source data
• Generally extracted from server

banners or client fields such as the
HTTP User-Agent

Network Protocols
conn.log
• TCP/UDP/ICMP connections
• A NetFlow-like view of tra�c

dns.log
• DNS artifacts, including queries and responses
• A form of passive DNS logs in the Bro format

http.log
• HTTP artifacts, including URLs, User-Agents,

Referrers, MIME types, and many others

rdp.log
• Remote Desktop Protocol artifacts

smtp.log
• SMTP (email sending and relaying) artifacts

PassiveDNS
Log Format

Distilling Full-Packet
Capture Source Data

Full-Packet Capture (pcap)
pcap files contain original packet data as seen at
the collection point. They can contain partial or
complete packet data.

Benefits
• Often considered the “holy grail” of network data

collection, this data source facilitates deep analysis
long after the communication has ended.

• Countless tools can read from and write to pcap files,
giving the analyst many approaches to examine them
and extract relevant information.

Drawbacks
• These files can grow extremely large – tens of

terabytes of pcap data can be collected each day from a
1Gbps link. This scale often makes analysis challenging.

• Legal constraints often limit availability of this source
data. Such constraints are also complicated when an
organization crosses legal jurisdictions.

• Encrypted communications are increasingly used,
rendering full-packet capture less useful for low-level
analysis.

Log Files
Log files are perhaps the most widely-used
source data for network and endpoint
investigations. They contain application or
platform-centric items of use to characterize
activities handled or observed by the log creator.

Benefits
• Since they are collected and retained for business

operations purposes, logs are widely available and
processes often in place to analyze them.

• Raw log data can be aggregated for centralized
analysis. Many organizations have this capability in
some form of SIEM or related platform.

Drawbacks
• Log data contains varying levels of detail in numerous

formats, often requiring parsing and enrichment
to add context or additional data to corroborate
findings.

• If log data is not already aggregated, finding it can
involve significant time and e�ort before analysis
can begin.

NetFlow and Related Flow-Based Collections
Flow records contain a summarization of network communications
seen at the collection point. NetFlow contains no content – just a
summary record including metadata about each network connection.
Whether used alone to determine if communications occurred or in
conjunction with other data sources, NetFlow can be extremely helpful
for timely analysis.

Benefits
• NetFlow and similar records require much less storage space due to the lack

of content. This facilitates much longer-term records retention.
• Analysis processes are much faster with NetFlow than full-packet capture.

It can be 100-1000x faster to run a query against NetFlow than the
corresponding pcap file.

• There are generally fewer privacy concerns with collecting and storing
Netflow. Local legal authority should be consulted prior to use.

• Analysis processes apply equally to all protocols – encrypted or plaintext,
custom or standards-based.

Drawbacks
• Without content, low-level analysis and findings may not be possible.
• Many collection platforms are unique and require training or licenses to access.

Distill pcap file to

Distill pcap file to

Distill pcap file to

NetFlow

“nfpcapd” utility from nfdump suite
• Permits quick Layer 3 – Layer 4 searching for network tra�c in pcap file

without parsing entire file

• http://for572.com/nfdump

$ nfpcapd -r infile.pcap -S 1 -z -l output_directory/

-r infile.pcap pcap file to read
-S 1 Directory hashing structure for output data. “1” = “year/month/day/”
-z Compress output files
-l output_directory/ Directory in which to place output files

Bro
NSM
Logs

Bro network security monitoring platform
• Logs include numerous views of network tra�c in a form that allows

flexible queries and parsing in numerous platforms

• http://for572.com/bro-nsm

$ bro -r infile.pcap

-r infile.pcap pcap file to read

Bro
NSM
Logs

Passive
DNS
Logs

PassiveDNS lightweight DNS tra c logger
• Generates simplified log records detailing DNS queries and responses

• http://for572.com/passivedns

$ passivedns -r infile.pcap -l dnslog.txt -L nxdomain.txt

-r infile.pcap pcap file to read
-l dnslog.txt Output file containing log entries of DNS queries and responses
-L nxdomain.txt Output file containing log entries of queries that generated NXDOMAIN

responses

The following entries are part of the results for a DNS query/response for the “www.reddit.com” hostname:
1456702040.919984||192.168.75.6||192.168.75.1||IN||www.reddit.com.||A||198.41.208.136||297||11
1456702040.919984||192.168.75.6||192.168.75.1||IN||www.reddit.com.||A||198.41.208.140||297||11
1456702040.919984||192.168.75.6||192.168.75.1||IN||www.reddit.com.||A||198.41.209.142||297||11
1456702040.919984||192.168.75.6||192.168.75.1||IN||www.reddit.com.||A||198.41.209.140||297||11
1456702040.919984||192.168.75.6||192.168.75.1||IN||www.reddit.com.||A||198.41.209.137||297||11

Each entry consists of the following fields:
1456702040.919984 UNIX timestamp + microseconds
192.168.75.6 Client IP address
192.168.75.1 Server IP address
IN Class (IN = “INTERNET” class)
www.reddit.com Name requested

A Record type
198.41.209.137 Answer received

(>1 gives multiple rows)
297 TTL value (seconds to cache)
11 Total record count

Network Forensics
and Analysis Poster

SOF-ELK SOF-ELK is a VM appliance with a preconfigured, customized installation of the Elastic Stack. It was
designed specifically to address the ever-growing volume of data involved in a typical investigation, as well
as to support both threat hunting and security operations components of information security programs. The SOF-ELK
customizations include numerous log parsers, enrichments, and related configurations that aim to make the platform
a ready-to-use analysis appliance. The SOF-ELK platform is a free and open-source appliance, available for anyone to

download. The configuration files are publicly available in a Github repository and the appliance is designed
for upgrades in the field. The latest downloadable appliance details are at http://for572.com/sof-elk-readme.

What is “ELK” and the “Elastic Stack”?
The Elastic Stack consists of the Elasticsearch search and analytics
engine, the Logstash data collection and enrichment platform, and
the Kibana visualization layer. It is commonly known as “ELK”,
named for these three components.
The broader Elastic Stack includes other components such as
the Elastic Beats family of log shippers, and various security and
performance monitoring components.
All of the ELK components and the Beats log shippers are free and
open-source software. Some other components of the Elastic Stack
are commercially-licensed.

Booting and Logging into SOF-ELK
The SOF-ELK VM is distributed in ready-to-boot mode. You may want
to add additional CPU cores and RAM allocation if available.
The VM’s IP address is displayed after it boots, on the pre-
authentication screen. This IP address is needed for both remote
shell access (SSH) and web access to the Kibana interface.
The user name is “elk_user” and the default password is
“forensics” for both this and the “root” users. Passwords for
both the “elk_user” and “root” accounts should be changed
immediately upon first boot.
The SSH server is running on the default port, 22. Access this with
your preferred SSH/SCP/SFTP client software.
The Kibana interface is running on port 5601. Access this with your
preferred web browser.

Updating With Git
The SOF-ELK VM uses a clone of the Github-based repository
containing all configuration files. This allows the user to update an
operational install’s configuration files without needing to download
a new copy of the VM itself. ALWAYS check the current Github
repository for any notes or special instructions before updating an
operational SOF-ELK platform.
To update the VM, ensure it has Internet connectivity and run the
following command:
$ sudo sof-elk_update.sh

Lucene Query Syntax
The Elastic Stack uses the Apache Lucene query syntax for searching its data.
Below are some of the basic syntaxes that will help you to search data that
has been loaded to SOF-ELK.
For further information, an online tutorial is available at the following page:
http://for572.com/lucene

Basic Searching
The most basic search syntax is “fieldname:value”, which will match
all documents with a “fieldname” field set to a value of “value”.
Searches can be negated by prefixing them with a “-” character. Some
examples:
• source_ip:192.168.25.0
• hostname:webserver
• -querytype:AAAA

Partial String Searches
The “*” is used as a wildcard character.
• username:*admin*
• query:*.cz.cc

Numerical and IP Address Ranges
The “[” and “]” characters denote inclusive range boundaries (i.e. greater
or equal to, less than or equal to) and the “{” and “}” character denote
exclusive range boundaries (i.e. greater than, less than). Note that the “TO”
must be capitalized.
• ip:[10.58.3.0 TO 10.58.3.255]
• rrcount:{5 TO 20]

Logical Construction
Multiple searches can be combined using “AND” and “OR”, which must
also be capitalized.
• destination_geo.asn:Amazon.com AND
 in_bytes:[1000000 TO 100000000]
• aprotocol:tcp OR aprotocol:udp

Clearing and Re-Parsing Data
Removing data from SOF-ELK’s Elasticsearch indices as well as forcing the
platform to re-parse source data on the filesystem itself have both been
automated with a shell script. Removal is done by index, and optionally
allows a single source file to be removed. The index name is required.
Get a list of currently-loaded indices:
$ sof-elk_clear.py -i list

Remove all data from the netflow index:
$ sof-elk_clear.py -i netflow

Remove all data from the syslog index and reload all source data:
$ sof-elk_clear.py -i syslog -r

Remove all data from the httpdlog index, but only documents originally
loaded from the /logstash/httpdlog/access_log file:
$ sof-elk_clear.py -i httpdlog

-f /logstash/httpdlog/access_log

Loading Data to SOF-ELK
SOF-ELK can ingest several data formats, including:
• Syslog (many di�erent log formats supported)
• HTTP server access logs
• NetFlow
• Bro logs
More sources are being tested and added to the platform and can be
activated through the Github repository. See the “Updating With Git”
section for more details on how to do this.
All source data can be loaded from existing files (DFIR Model) as well
as from live sources (Security Operations Model).

DFIR Model
Place source data onto the SOF-ELK VM’s filesystem in the appropriate
location:
Syslog data: /logstash/syslog/
Since syslog entries often do not include the year, subdirectories for
each year can be created in this location – for example,
/logstash/syslog/2016/

HTTP server logs: /logstash/httpd/
Supports common, combined, and related formats
PassiveDNS logs: /logstash/passivedns/
Raw logs from the passivedns utility
NetFlow from nfcapd-collected data stores:
/logstash/nfarch/
Use the nfdump2sof-elk.sh script to create compatible ASCII
format data (Script included on the SOF-ELK VM and available from the
Github repository)
Bro NSM logs: /logstash/bro/
Supports multiple di�erent log types, based on default Bro NSM
filenames

Security Operations Model
Open the necessary firewall port(s) to allow your preferred network-
based ingest to occur.

Syslog: TCP and UDP syslog protocol
$ sudo fw_modify.sh -a open -p 5514 -r tcp

$ sudo fw_modify.sh -a open -p 5514 -r udp

Syslog: Reliable Event Logging Protocol (RELP)
$ sudo fw_modify.sh -a open -p 5516 -r tcp

Syslog: Elastic Filebeat shipper
$ sudo fw_modify.sh -a open -p 5044 -r tcp

NetFlow: NetFlow v5 protocol
$ sudo fw_modify.sh -a open -p 9995 -r udp

HTTP Server logs: TCP and UDP syslog protocol
$ sudo fw_modify.sh -a open -p 5515 -r tcp

$ sudo fw_modify.sh -a open -p 5515 -r udp

HTTP Server logs: RELP
$ sudo fw_modify.sh -a open -p 5517 -r tcp

Configure the log shipper or source to send data to the port
indicated above.

SOF-ELK Dashboards
Several Kibana dashboards are provided, each designed to address
basic analysis requirements. Open the Kibana interface in a web
browser using the SOF-ELK VM’s IP address on port 5601.
The following dashboards are included:
• SOF-ELK VM Introduction Dashboard
• Syslog Dashboard
• HTTPD Log Dashboard
• NetFlow Dashboard
Additional dashboards will be distributed through the Github
repository. (See the “Updating With Git” section.)
The Kibana dashboards allow the analyst to interact with and explore
the data contained in the underlying Elasticsearch engine. Several
features provide a level of interactivity that allows dynamic analysis
across vast volumes of data.
Querying Available Data
The top of each dashboard allows the user to input Lucene queries,
detailed in the “Lucene Query Syntax” section. Elasticsearch
determines how well its documents match, including a “_score”
field that indicates how well each document matches the query.

Filtering
Filters can also be applied in the Kibana interface. These are similar
to queries, but are a binary match/non-match search without
a “_score” field. Elasticsearch caches frequently-used filters to
optimize their performance.
Kibana shows filters as bubbles below the query field. Green bubbles
indicate positive match filters, red bubbles indicate negative match
filters.

Filters can be modified with the menu that appears after hovering
over the filter bubble.

From left to right, these options are: toggle filter on or o�, pin filter
to all dashboards, negate filter, delete filter, and manually edit filter.
Document Expansion
When a dashboard includes a document listing panel, each document
can be expanded by clicking the triangle icon on the left.

This will show all fields for the document.

Interactive Filter Generation
Each field displayed in the record details can be interactively built
into a filter with the magnifying glass icons. The plus sign creates a
positive filter, the minus sign creates a negative filter. The table icon
adds the field to the document listing panel.

for upgrades in the field. The latest downloadable appliance details are at

Network Forensics is a critical component
for most modern digital forensic,
incident response, and threat hunting
work. Whether pursued alone or as
a supplement or driver to traditional
endpoint investigations, network data can
provide decisive insight into the human
or automated communications within a
compromised environment.

Network Forensic Analysis techniques
can be used in a traditional forensic
capacity as well as for continuous incident
response/threat hunting operations.

Additional Resources

SANS FOR572: Advanced Network
Forensics and Analysis:
http://for572.com/course

FOR572 Course Notebook:
http://for572.com/notebook

Network Forensics and Analysis Poster:
http://for572.com/poster

GIAC Certified Network Forensic
Analyst certification available:
http://for572.com/gnfa

 Layer 2-7 Devices

Continuous Incident Response and Threat
Hunting: Proactive Threat Identification
CORE CONCEPT:
Apply new intelligence to existing data to discover unknown incidents

NETWORK FORENSICS USE CASE:
Threat intelligence often contains network-based indicators such as IP addresses,
domain names, signatures, URLs, and more. When these are known, existing data
stores can be reviewed to determine if there were indications of the intel-informed
activity that warrant further investigation.

Post-Incident Forensic Analysis:
Reactive Detection and Response
CORE CONCEPT:
Examine existing data to more fully understand a known incident

NETWORK FORENSICS USE CASE:
Nearly every phase of an attack can include network activity. Understanding an
attacker’s actions during Reconnaissance, Delivery, Exploitation, Installation,
Command and Control, and Post-Exploitation phases can provide deep and valuable
insight into their actions, intent, and capability.

This poster was created by SANS Instructor Phil Hagen with support from SANS DFIR Faculty

DFIR-Network_v1_4-17

Network Traffic Anomalies Knowing what is “normal” in any environment is critical in
order to quickly determine outlier events that may suggest

suspicious or malicious activity. In the world of network
protocols, this can be a significant challenge. There are

countless ways network traffic can be manipulated to the
attacker’s advantage while still appearing to be normal.
In many cases, these deviations still follow all the rules

of the carrier protocol. The conditions presented here
can be useful in identifying anomalies, but this is not

an exhaustive list. They may be useful in establishing or
boosting a baselining program or for providing a healthy

dose of skepticism during an investigation.

Network Forensic Toolbox
Tools are a critical part of any forensic process, but they alone cannot
solve problems or generate findings. The analyst must understand the
available tools and their strengths and weaknesses, then asses the best
approach between raw source data and the investigative goals at hand.
The tools detailed here are far from a comprehensive list, but represent a
core set of utilities often used in network forensic analysis. More extensive
documentation is available in the tools’ man pages and online documentation.

tcpdump: Log or parse network traffic
Classically used to dump live network tra�c to pcap files,
tcpdump is more commonly used in network forensics to
perform data reduction by reading from an existing pcap file, applying a filter,
then writing the reduced data to a new pcap file. tcpdump uses the BPF
(Berkeley Packet Filter) language for packet selection.
Usage:
$ tcpdump <options> <bpf filter>

Common command-line parameters:
-n Prevent DNS lookups on IP addresses. Use twice to also prevent port-

to-service lookups
-r Read from specified pcap file instead of the network
-w Write packet data to a file
-i Specify the network interface on which to capture
-s Number of bytes per packet to capture
-C Number of megabytes to save in a capture file before starting a new

file
-G Number of seconds to save in each capture file (requires time format

in output filename)
-W Used with the -C or -G options, limit the number of rotated files
Note: The BPF filter is an optional parameter
Common BPF primitives:
host IP address or FQDN tcp Layer 4 protocol is TCP
net Netblock in CIDR notation udp Layer 4 protocol is UDP
port TCP or UDP port number icmp Layer 4 protocol is ICMP
ip Layer 3 protocol is IP
Parameters such as host, net, and port can be applied in just one direction
with the src or dst modifiers. Primitives can be combined with and, or,
or not, and order can be enforced with parentheses.
BPF Examples:
• tcp and port 80
• udp and dst host 8.8.8.8
• src host 1.2.3.4 and (dst net 10.0.0.0/8 or

 dst net 172.16.0.0/12)
Capturing live tra�c generally requires elevated operating system
permissions (e.g. sudo), but reading from existing pcap files only requires
filesystem-level read permissions to the source file itself.
Examples:

$ tcpdump -n -r infile.pcap
-w tcp80.pcap 'tcp port 80'

$ sudo tcpdump -n -i enp0s3 -w outfile.pcap

$ sudo tcpdump -n -i enp0s3 -C 1024
-G 100 -w 10GB_rolling_buffer.pcap

$ sudo tcpdump -n -i enp0s8 -G 86400
-w dns-%F.%T.pcap

Wireshark: Deep, protocol-aware
packet exploration and analysis
Wireshark is perhaps the most widely known packet data exploration tool. It
provides extensive protocol coverage and low-level data exploration features.
Its included protocol parsers number over 1,500 and extract over 140,000
di�erent data fields. Wireshark parsers often normalize the content in these
fields for readability. (DNS hostnames, for example, are presented in FQDN
form rather than literal strings as they appear in the packet.)
Wireshark display filters:
Wireshark provides rich and extensive display filtering functionality based on
the fields identified by protocol decoders. Any of the 140,000+ fields can be
evaluated in a display filter statement.
Basic filters use the following syntax:
• fieldname == value
• fieldname < value
• fieldname >= value
Note: Avoid using the != operator, as it can produce unintended results with
fields that occur more than once in a single packet.
Complex display filters can be built with the && and || logical conjunctions,
and parenthesis to enforce order of operations.
Display filter resources:
See the wireshark-filter man page for more command-line details
on how to construct display filters.

tcpxtract: Carve reassembled TCP
streams for known header and footer
bytes to attempt file reassembly
This is the TCP equivalent to the venerable foremost and scalpel
disk/memory carving utilities. tcpxtract will reassemble each TCP
stream, then search for known start/end bytes in the stream, writing out
matching sub-streams to disk. It is not protocol-aware, so it cannot determine
metadata such as filenames and cannot handle protocol content consisting of
non-contiguous byte sequences. Notably, tcpxtract cannot parse SMB
tra�c, encrypted payload content, or chunked-encoded HTTP tra�c. Parsing
compressed data requires signatures for the compressed bytes rather than
the corresponding plaintext.
Usage:
$ tcpxtract -r <input file> <options>
Common command-line parameters:
-f Read from specified pcap file
-c Configuration (signature) file to use
-o Place output files into specified directory
Signature format:
• file_ext(max_size, start_bytes, end_bytes);

Signature examples:
• gif(3000000, \x47\x49\x46\x38\x37\x61,
 \x00\x3b);
• rpm(400000000, \xed\xab\xee\xdb);

Example:
• tcpxtract -f infile.pcap

-c rpm-tcpxtract.conf -o ./

bro-cut: Extract specific fields from Bro logs
The Bro NSM creates log files as needed to document observed
network tra�c. These are in tab-separated-value format, but require
postprocessing to extract just the fields of interest.
Usage:
$ cat <log file> | bro-cut <options> <fields>

Common command-line parameters:
-u Convert timestamp to human-readable, UTC format
-c Display header blocks at start of output
Identifying fields of interest:
Each di�erent log file type contains various fields, detailed in the header of the file.
Inspect the first few lines and identify the one that begins with the string #fields.
The remainder of this line contains the Bro-specific names for each column of
data, which can be extracted with the bro-cut utility. Consult the Bro NSM
documentation for details on each column’s meaning.
Examples:
$ cat files.log | bro-cut -u ts

fuid tx_hosts sha256
$ zcat http*.gz | bro-cut -u ts id.orig_h

host uri user_agent info_code

NetworkMiner: Protocol-aware object
extraction tool that writes files to disk
Object extraction is often a tedious task, but NetworkMiner
reliably performs this function for a number of common protocols. File objects
are written to disk as they are encountered, while fields (credentials, hosts,
etc.) can be exported to CSV format.
Writing files to disk often triggers host-based defenses, so running this utility
in an isolated and controlled environment is the most common use model.
NetworkMiner is a commercial utility that also provides a free version.
The free version is licensed for operational use, not just testing.

ngrep: Display metadata and context
from packets that match a specified
regular expression pattern
While grep is a very capable tool for ASCII input, it does not understand the
pcap file format. ngrep performs the same function but against the Layer
4 – Layer 7 payload in each individual packet. It does not perform any TCP
session reassembly, so matches are made against individual packets only.
Usage:
$ ngrep -I <input file> <options>

<pattern> <bpf filter>

Common command-line parameters:
-I Read from specified pcap file
-O Write matching packets to specified pcap file
-i Case-insensitive search
-v Invert match – only show packets that do not match the search

pattern
-t Show timestamp from each matching packet
Note: The BPF filter is an optional parameter
Examples:

$ ngrep -I infile.pcap 'RETR' 'tcp and port 21'

$ ngrep -I infile.pcap -i 'l33tAUTH'

tcpflow: Reassemble input packet data
to TCP data segments
This utility will perform TCP reassembly, then output each side of the
TCP data flows to separate files. This is essentially a scalable, command-
line equivalent to Wireshark’s “Follow | TCP Stream” feature. Additionally,
tcpflow can perform a variety of decoding and post-processing functions
on the resulting flows.
Usage:
$ tcpflow <options> -r <input file>

-o <output path>

Common command-line parameters:
-r Read from specified pcap file (can be used multiple times for multiple files)
-l Read from multiple pcap files (with wildcards)
-o Place output files into specified directory
Examples:

$ tcpflow -r infile.pcap -o /tmp/output/

$ tcpflow -l *.pcap -o /tmp/output/

editcap: Modify contents of a capture file
Since the BPF is limited to evaluating packet content data, a di�erent
utility is required to filter on pcap metadata. This command will read
capture files, limit the time frame, file size, and other parameters, then write
the resulting data to a new capture file, optionally de-duplicating packet data.
Usage:
$ editcap <options> <input file>

<output file>

Common command-line parameters:
-A Select packets at or after the specified time

(Use format: YYYY-MM-DD HH:MM:SS)
-B Select packets before the specified time
-d De-duplicate packets

(Can also use -D or -w for more fine-grained control)
-c Maximum number of packets per output file
-i Maximum number of seconds per output file (Note that the -c and

-i flags cause multiple files to be created, each named with an
incrementing integer and initial timestamp for each file’s content,
e.g. output_00000_20170417174516.pcap)

Examples:

$ editcap -A '2017-01-16 00:00:00'
-B '2017-02-16 00:00:00'
infile.pcap 2017-jan-16.pcap

$ editcap -d infile.pcap dedupe.pcap

$ editcap -i 3600 infile.pcap hourly.pcap

capinfos: Calculate and display high-level
summary statistics for an input pcap file
This utility displays summary metadata from one or more source pcap
files. Reported metadata includes but is not limited to start/end times, hash
values, packet count, and byte count.
Usage:
$ capinfos <options> <input file 1>

<input file 2> <...>

Common command-line parameters:
-A Generate all available statistics
-T Use “table” output format instead of list format
Examples:
$ capinfos -A infile.pcap
$ capinfos -A -T infile2.pcap
$ capinfos -A *.pcap

grep: Display lines from input text that
match a specified regular expression pattern
Searches input text from a file or via STDIN pipes using extremely
flexible and age-old regular expressions. Matching lines are displayed, but
output can be fine-grained to address specific analytic requirements.
Usage:
$ grep <options> <pattern> <input file>

Common command-line parameters:
-i Case-insensitive search
-r Recursively process all files within a directory tree
-a Fully search all files as ASCII, even if they appear to contain binary data
-l Only display file names that contain matches instead of the lines on which

the match is found
-F Disable the regular expression engine, providing a significant speed benefit
-c Display count of matching lines
-A Display a number of lines before each line that matches the search pattern
-B Display a number of lines after each line that matches the search pattern
-C Display a number of context lines before and after each line that matches

the search pattern
-H Display filenames in addition to matching line contents – this is the default

with -r
-h Omit filenames from output as displayed with -r
-v Invert match – only show results that do not match the search pattern – with

-l, show files’ names in which there is at least one line not matching the
search pattern – with -c, show count of non-matching lines

Regular expressions are a dark art of shell commands.
Examples:
$ grep pastebin access.log
$ grep -rail google /var/spool/squid/
$ grep -Fv 192.168.75. syslog-messages
$ grep -C 5 utmscr error.log

mergecap: Merge two or more pcap files
When faced with a large number of pcap files, it may be advantageous
to merge a subset of them to a single file for more streamlined processing.
This utility will ensure the packets written to the output file are chronological.
Usage:
$ mergecap <options> -w <output file>

<input file 1> <input file 2>
<input file n>

Common command-line parameters:
-w New pcap file to create, containing merged data
-s Number of bytes per packet to retain
Example:
$ mergecap -w new.pcap infile1.pcap

infile2.pcap

nfdump: Process NetFlow data from
nfcapd-compatible files on disk
Files created by nfcapd (live collector) or nfpcapd
(pcap-to-NetFlow distillation) are read, parsed, and displayed by nfdump.
Filters include numerous observed and calculated fields, and outputs can be
customized to unique analysis requirements.
Usage:
$ nfdump (-R <input directory path> |

 -r <nfcapd file>)
<options> <filter>

Common command-line parameters:
-r Read from the specified single file
-R Recursively read from the specified directory tree
-t Specify time window in which to search (Use format:

YYYY/MM/DD.hh:mm:ss-YYYY/MM/DD.hh:mm:ss)
-o Output format to use (line, long, extended, or custom with

fmt:<format string>)
-O Output sort ordering (tstart, bytes, packets, more)
-a Aggregate output on source IP+port, destination IP+port, layer 4

protocol
-A Comma-separated custom aggregation fields
Filter syntax:
host IP address or FQDN
net Netblock in CIDR notation
proto Layer 4 protocol (tcp, udp, icmp, etc)
as Autonomous System number
Parameters such as host, net, and port can be applied in just one
direction with the src or dst modifiers. Primitives can be combined with
and, or, or not, and order can be enforced with parenthesis.
Filter examples:
• proto tcp and port 80
• proto udp and dst host 8.8.8.8
• src host 1.2.3.4 and (dst net 10.0.0.0/8 or
dst net 172.16.0.0/12)

• src as 32625 (Note: Not all collections include ASNs)
Custom output formatting:
Format strings for the custom output format option
(-o 'fmt:<format string>')consist of format tags, including
but not limited to those below.
%ts Start time %sa Source IP address
%te End time %da Destination IP address
%td Duration (In seconds) %sp Source port (TCP or UDP)
%pr Layer 4 protocol
%dp Destination port (TCP or UDP; formatted as type.code for ICMP)
%sap Source IP address and port
%dap Destination IP address and port
%pkt Packet count
%byt Byte count
%flg TCP flags (sum total for flow)
%bps Bits per second (average)
%pps Packets per second (average)
%bpp Bytes per packet (average)
Custom aggregation:
Records displayed can be aggregated (tallied) on user-specified fields
including but not limited to those below:
proto Layer 4 protocol
srcip Source IP address
dstip Destination IP address
srcport TCP or UDP source port
dstport TCP or UDP destination port
srcnet Source netblock in CIDR notation
dstnet Destination netblock in CIDR notation
Examples:
$ nfdump -r nfcapd.201703271745

-o long 'proto tcp and port 53'
$ nfdump -R /var/log/netflow/2017/03/

-o 'fmt:%sa %da %pr' -A srcip,dstip,proto
'dst net 66.35.59.0/24'

$ nfdump -R /var/log/netflow/2016/
-O tstart 'proto tcp and port 4444'

tshark: Command-line access to nearly
all Wireshark features
For all of Wireshark’s features, the ability to access them from the
command line provides scalable power to the analyst. Whether building
repeatable commands into a script, looping over dozens of input files, or
performing analysis directly within the shell, tshark packs nearly all of
Wireshark’s features in a command-line utility.
Usage:
$ tshark -n -r <input file> <options>

-Y '<display filter>'

Common command-line parameters:
-n Prevent DNS lookups on IP addresses
-r Read from specified pcap file
-w Write packet data to a file
-Y Specify Wireshark-compatible display filter
-T Specify output mode (fields, text (default), pdml, etc.)
-e When used with -T fields, specifies a field to include in output

tab-separated values (can be used multiple times)
-G Specify glossary to display (protocols, fields, etc.) – shows

available capabilities via command line, suitable for grep’ing, etc.
Display filter resources:
See the wireshark-filter man page for more command-line details
on how to construct display filters.
Examples:
$ tshark -n -r infile.pcap

 -Y 'http.host contains "google"'
 -T fields -e ip.src -e http.host
 -e http.user_agent

$ tshark -n -r infile.pcap
 -Y 'ssl.handshake.certificates'
 -w just_certificates.pcap

Moloch
Moloch is a full-packet ingestion and indexing platform. It reads a live network data stream of existing pcap files,

then extracts data from known protocol fields to store in an Elasticsearch backend. Moloch calls these fields
Session Protocol Information, or SPI data. Moloch uses a session-centric view, associating both the client- and server-

sourced directions of a communication stream for easy analysis. Moloch separates full-packet data and SPI data, allowing
different storage allocation and retention policies. The user can also export a subset of traffic in pcap format, making it a

valuable addition to the network forensic workflow since any other capable tool can be used on the derived data.

Loading Data to Moloch
Moloch can load network tra�c from existing pcap files (DFIR Model) or
a live network interface (Security Operations Model).
DFIR Model
Place pcap files into Moloch’s “raw” directory, often /data/
moloch/raw/. Ensure the Moloch user (typically “nobody”) has
read permissions to the file(s).
Load the data with the following command:
$ moloch-capture -r /data/moloch/raw/infile.pcap

Security Operations Model
(Note: Consult the Moloch documentation for more comprehensive
instructions on this model. The steps here are a brief overview, not a
full tutorial.)
Add a network interface to the Moloch platform and connect it to a
network data source such as a tap or port mirror.
In Moloch’s “config.ini” file, set the “interface” setting to the
interface detailed above.

Clearing Data
To remove SPI data from Moloch’s Elasticsearch index, first
stop any running capture and viewer processes. Then, run the
following command:
$ /data/moloch/db/db.pl
<elasticsearch url> wipe

(Your path may vary – /data/moloch/db/ is the typical
default path for this script.)
On the FOR572-distributed Moloch VM, the
“moloch_clear.sh” script automates the entire
process, including stopping and restarting the Moloch services.
To re-parse any input data, re-load the pcap files as described
in the “Loading Data to Moloch” section.
Examples:
$ /data/moloch/db/db.pl
http://127.0.0.1:9200 wipe

$ sudo moloch_clear.sh

Query Syntax
Moloch uses a unique query syntax, but o�ers UI features that keep it easy to
learn and use.
The search interface uses a “drop-down suggestion” feature to show the
analyst all matching field names.

For more comprehensive online documentation, including a list of all fields,
search syntax, and the Moloch UI itself, click the owl icon in the top left.
Basic searching uses the following syntax:
• fieldname == value
• fieldname != value
• fieldname > value
• fieldname <= value

Strings can use ”*” as a wildcard. IP address fields can use full IPs or
netblocks in CIDR notation. Logical conjunction is performed with “&&”,
“||”, and parenthesis.
Searching for sessions in which any specific field exists at all requires the
following syntax:
fieldname == EXISTS!

Examples:
• host.dns == *google*
• http.method == POST && host.http == *homedepot.com
• tls.cipher == EXISTS !! && tls.cipher != *DHE*

Moloch UI
The Moloch web-based interface includes several tabs, each
presenting a di�erent view of the underlying source data.
Sessions: This is the most frequently-used tab, where session data
is displayed and queried. Each session can be unrolled to expose all
SPI data extracted from the original content.
SPI View: Explore all of SPI fields within a data set.
SPI Graph: Any SPI field can be charted and compared to other
fields over time.

Connections: A graph view comparing any two SPI fields. Extremely
useful for identifying of relationships between data points at scale.
Files: Information regarding the pcap files that Moloch has loaded
and parsed.
Users: List, create, delete, and manage Moloch user accounts.
Stats: Metrics for each Moloch capture node and Elasticsearch
cluster member.
Settings: Manage settings for the current user.

calamaris: Generate summary reports
from web proxy server log files
The calamaris utility performs high-level summary analysis of
many di�erent formats of web proxy log files. These reports are broken down
by HTTP request methods, second-level domains, client IP addresses, HTTP
response codes, and more.
Usage:
cat <input file> | calamaris <options>

Common command-line parameter:
-a Generate all available reports
Examples:
$ cat access.log | calamaris -a

$ zgrep 1.2.3.4 access.log.gz | calamaris -a

$ grep badhost.cc.cz | calamaris -a

flowgrep.py: Extract TCP streams that match
a specified regular expression pattern
While ngrep only searches within a single packet for its search
patterns, flowgrep.py reconstructs TCP sessions first, then
searches the resulting streams for matches. The reassembled data streams
that match the search pattern are written to disk.
Usage:
$ sudo flowgrep.py <options>
<bpf filter>

Common command-line parameters:
-r Read from specified pcap file
-c Specify pattern to search for in client-to-server side
-s Specify pattern to search for in server-to-client side
-a Specify pattern to search for in either side
-i Case-insensitive search
-v Invert match - only write streams that do not match the search pattern
-l Directory in which to place the reconstructed payloads of matched streams
Notes: flowgrep.py requires root access because it changes its e�ective userid
to nobody at runtime
The BPF filter is an optional parameter
Examples:
$ sudo flowgrep.py -r infile.pcap

 -c 'STARTTLS'
$ sudo flowgrep.py -r infile.pcap -i

 -a '706173736D656F77' -l ./output/

HTTP GET vs POST Ratio
How: HTTP proxy logs, NSM logs, HTTP server logs

What: The proportion of observed HTTP requests that use the GET, POST or other methods.

Why: This ratio establishes a typical activity profile for HTTP tra�c. When it skews too far from the
normal baseline, it may suggest brute force logins, SQL injection attempts, RAT usage, server
feature probing, or other suspicious/malicious activity.

Top-Talking IP Addresses
How: NetFlow

What: The list of hosts responsible for the highest volume of network communications in volume
and/or connection count. Calculate this on a rolling daily/weekly/monthly/annual basis to
account for periodic shifts in tra�c patterns.

Why: Unusually large spikes in tra�c may suggest exfiltration activity, while spikes in connection
attempts may suggest C2 activity.

HTTP User-Agent
How: HTTP proxy logs, NSM logs, HTTP server logs

What: The HTTP User-Agent generally identifies the software responsible for issuing an HTTP
request. This can be useful to profile software operating within the environment.

Why: This is an invaluable identifier to profile activity within the environment. It can profile which
web browser titles, versions, and extensions are in use. More recently, desktop and mobile
applications use unique User-Agent strings as well. Knowing the “normal” strings present
causes outliers to stand out, which may highlight suspicious activity. However, this is an
arbitrary and optional header, so be skeptical of behavior that suggests forgery – such as
rapid change for a given IP address, significant increase in the number of observed User-
Agent strings, etc.

Top DNS Domains Queried
How: Passive DNS logs, DNS server-side query logs, NSM logs

What: The most frequently queried second-level domains (e.g. “example.com” or
“example.co.uk”) based on internal clients’ request activity. The top 1000 domains
on a rolling daily basis may be a good starting point, but this number should be adjusted
to local requirements.

Why: In general, the behaviors of a given environment don’t drastically change on a day-to-
day basis. Therefore, the top 500-700 domains queried on any given day should not
di�er too much from the top 1000 from the previous day. (The di�erence in count allows
for natural ebb and flow of daily behavior.) Any domain that rockets to the top of the
list may suggest an event that requires attention, such as a new phishing campaign, C2
domain, or other anomaly.

HTTP Return Code Ratio
How: HTTP Proxy logs, NSM logs, HTTP server logs

What: The return code is a three-digit integer that helps to indicate “what happened” on the server
answering a request. These are grouped into “families” by hundreds: 100s = informational,
200s = success, 300s = redirection, 400s = client-side error, 500s = server-side error.

Why: Knowing what happened at the server end of the transaction can be extremely useful in
characterizing HTTP activity. A spike in 400-series codes could indicate reconnaissance or
scanning activity, while an unusually high number of 500-series codes could indicate failed login
or SQL injection attempts. As with other observations, knowing the typically-observed ratios of
the these values can help to identify anomalous trends that require further investigation.

Newly-Observed/Newly-Registered Domains
How: Passive DNS logs, DNS server-side query logs, NSM logs

What: Any domain that has never previously been queried from within the environment, according
to the historical domain query logs, or the age of a domain, according to its WHOIS “Date
Registered.”

Why: The first time a domain is queried in a given environment may indicate a new or highly-
focused targeting operation. Brand new domains are often associated with malicious activity,
given that attackers generally require a dynamic infrastructure for their operations.

External Infrastructure Usage Attempts
How: NetFlow, Firewall logs, NSM logs

What: Although best practice is to restrict outbound communications by default and approve
necessary services and connections by exception, this is often not the case – perimeters
are still notoriously porous in the outbound direction. Even in a properly-constrained
environment, these attempts should create artifacts of the failed connection attempts.

Why: By identifying internal clients that attempt to or succeed in using external services, it is
possible to quickly collect a list of endpoints that exhibit anomalous behavior. These may
include connections to external DNS servers rather than internal resolvers, HTTP connection
attempts that seek to bypass proxy servers, connections to VPN providers, raw socket
connections to unusual ports, and more.

Typical Port and Protocol Usage
How: NetFlow

What: The list of ports and corresponding protocols that account for the most communication in
terms of volume and/or connection count. Calculate this on a daily/weekly/monthly/annual
basis to account for periodic shifts in tra�c patterns.

Why: Similar to the purpose for tracking top-talking IP addresses, knowing the typical port and
protocol usage enables quick identification of anomalies that should be further explored for
potential suspicious activity.

DNS TTL Values and RR Counts
How: Passive DNS logs, NSM logs

What: TTL refers to the number of seconds that a caching DNS server should retain a given record.
The number of Resource Records in a given DNS packet is noted in the RR count field.

Why: Very short TTLs may suggest fast-flux DNS or potential tunneling behavior. A high RR
count could indicate large-scale load balancing associated with fast-flux or similar elastic
architectures. While these behaviors can suggest suspicious behavior, they are also commonly
seen with benign network activity such as content delivery networks, round robin DNS-based
load balancing, and similar architectures.

Autonomous System Communications
How: NetFlow, NSM logs

What: Autonomous System Numbers (ASNs) are numerical ‘handles’ assigned to netblock
owners such as ISPs, datacenters, and other service providers. These can suggest
Internet “neighborhoods” to characterize network tra�c based on more than IP address
or CIDR blocks.

Why: Certain ASNs are often more prominently associated with malicious activity than others.
Reputation databases can be useful in determining these. Even without an intelligence
overlay, identifying the ASNs with which systems in the environment communicate is a useful
baseline metric that can easily identify communications with unusual ASNs that require
further attention.

Periodic Traffic Volume Metrics
How: NetFlow

What: Maintaining tra�c metrics on time-of-day, day-of-week, day-of-month and similar bases.

Why: These will identify normative tra�c patterns, making deviations easier to spot and
investigate. A sudden spike of tra�c or connections during an overnight or weekend period
when there is typically little or no tra�c would be a clear anomaly of concern.

@sansforensics sansforensics dfir.to/gplus-sansforensics dfir.to/MAIL-LIST

FOR508
Advanced IR
and Threat Hunting
GCFA

FOR572
Advanced Network
Forensics and
Analysis GNFA

FOR578
Cyber Threat
Intelligence

FOR610
REM: Malware Analysis
GREM

SEC504
Hacker Tools, Techniques,
Exploits, and
Incident Handling GCIH

FOR500
Windows Forensics
(Formerly FOR408)

GCFE

FOR518
Mac Forensics

FOR526
Memory Forensics

In-Depth

FOR585
Advanced

Smartphone
Forensics GASF

O P E R AT I N G
S Y S T E M &
D E V I C E
I N - D E P T H

I N C I D E N T
R E S P O N S E
& T H R E AT
H U N T I N G

dfir.to/DFIRCast

https://www.sans.org/course/windows-forensic-analysis
https://www.sans.org/course/mac-forensic-analysis
https://www.sans.org/course/memory-forensics-in-depth
https://www.sans.org/course/advanced-smartphone-mobile-device-forensics
https://www.sans.org/course/advanced-incident-response-threat-hunting-training
https://www.sans.org/course/advanced-network-forensics-analysis
https://www.sans.org/course/cyber-threat-intelligence
https://www.sans.org/course/reverse-engineering-malware-malware-analysis-tools-techniques
https://www.sans.org/course/hacker-techniques-exploits-incident-handling

